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Abstract. We provide a detailed quantum treatment of the spectral characteristics and of the dynamics of
nondispersive two-electron wave packets along the periodically driven, collinear frozen planet configuration
of helium. These highly correlated, long-lived wave packets arise as a quantum manifestation of regular
islands in a mixed classical phase space, which are induced by nonlinear resonances between the external
driving and the unperturbed dynamics of the frozen-planet configuration. Particular emphasis is given to
the dependence of the ionization rates of the wave packet states on the driving field parameters and on
the quantum mechanical phase space resolution, preceded by a comparison of 1D and 3D life times of
the unperturbed frozen planet. Furthermore, we study the effect of a superimposed static electric field
component, which, on the grounds of classical considerations, is expected to stabilize the real 3D dynamics
against large (and possibly ionizing) deviations from collinearity.

PACS. 32.80.Rm Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states) –
05.45.Mt Semiclassical chaos (“quantum chaos”) – 31.25.Jf Electron correlation calculations for atoms
and ions: excited states

1 Introduction

As documented by an increasing amount of literature,
electronic wave packets represent an important object
of experimental studies in atomic and molecular physics
(e.g., [1,2]). The possibility to localize the electronic pop-
ulation in phase space can be regarded as the crucial link
between a quantum wavefunction and a classical point
particle [3], and has led to various applications in the con-
text of quantum control (e.g., [4,5]). For a long time, it
was common belief that the maximum evolution time un-
til which such a localized phase space distribution can be
maintained is ultimately limited by the time scale corre-
sponding to the anharmonicity of the underlying classical
potential. After this time scale, any coherent superposition
which was initially well localized in position and momen-
tum space would have spread out over the whole classical
orbit due to dispersion, i.e., due to the fact that different
components of the superposition contribute with different
classical frequencies. This is usually termed as the collapse
of the wave packet.

A decade ago, however, it was found that this spread-
ing can actually be suppressed by means which are
common in quantum control, namely by applying electro-
magnetic fields to the quantum configuration. This was
explicitly demonstrated for one-electron atoms driven by
microwave fields with linear [6–8], circular [9,10], and el-
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liptic polarization [11]. There, a Rydberg wave packet, ini-
tially launched along a Kepler orbit with principal quan-
tum number n, is exposed to a microwave field which
is resonant with the periodic classical motion. Then, for
appropriate field amplitudes (which must neither be too
strong nor too weak, compared to the Coulomb force
on the electron) and for the appropriate relative phase
between the microwave field and the Kepler oscillation,
the spreading of the wave packet (which usually occurs
after approx. n/[3π(∆n)2] Kepler cycles, given a coher-
ent superposition of ∆n unperturbed eigenstates centered
around n) is completely inhibited. While perfectly keeping
their shape, such nondispersive wave packets may well fol-
low the classical motion over time scales up to 106 Kepler
cycles [6,8,10,12] before appreciable ionization (induced
by the driving field) sets in [6,8,13]. This stabilization
phenomenon is best understood from the underlying clas-
sical dynamics. In classical phase space, the time-periodic
perturbation of the microwave destroys the global integra-
bility of the Coulomb dynamics; local “islands” of regular
motion, embedded into a “sea” of chaotic, ionizing dy-
namics, are created by the nonlinear resonance between
the driving field and the unperturbed Kepler motion. The
nondispersive quantum wave packets are nothing but the
time-periodic eigenstates (Floquet states) of the driven
atom, which arise from a local quantization within these
resonance islands [14,15] (see [16] for a recent review on
the topic).
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The above interpretation in terms of nonlinear reso-
nances in a mixed phase space suggests that the concept of
nondispersive wave packets can be generalized to atomic
(or molecular) systems that are more complex than hy-
drogen or hydrogen-like Rydberg atoms – such as, e.g.,
the correlated dynamics in doubly excited helium. How-
ever, such a generalization is not at all obvious, since most
doubly excited two-electron orbits of the bare three-body
Coulomb problem (as the classical version of the doubly
excited helium atom) are unstable and promote rapid au-
toionization of the configuration. This prevents the con-
finement of an initially localized wave packet on longer
time scales.

Nonetheless, extensive studies on the classical dynam-
ics of helium [17] have identified local regions of regu-
lar motion which are associated with configurations of
particular symmetry of the two-electron atom. The most
prominent and surprising example is the “frozen planet”
orbit [18,19], a highly polarized, nearly collinear con-
figuration with asymmetric excitations of the electrons.
The frozen planet’s stability essentially relies on the non-
negligible electron-electron interaction (the electrons are,
contrary to intuition, located on the same side of the
nucleus). Stable eigenmodes sustain radial, vibration-like
oscillations of the outer electron, as well as coupled trans-
verse excursions of the outer and inner electron. Well-
defined eigenfrequencies are associated with these eigen-
modes, what makes the configuration a good candidate
for inducing nonspreading wave packets in the correlated
two-electron dynamics, by near-resonant external driving.

In fact, our earlier analysis of the classical dynamics of
helium in a linearly polarized electromagnetic field already
provided strong support for nondispersive wave packets
along the frozen-planet orbit [20,21]. The external per-
turbation induces regular islands within the phase space
of collinear motion (where electrons and nucleus are lined
up parallel to the driving field polarization axis), which
are due to nonlinear resonances between the drive and
the oscillation of the outer electron. The dynamics within
these resonances is in general unstable with respect to
deviations from collinearity (in contrast to the analogous
scenario in atomic hydrogen, the resonantly driven one
dimensional Kepler orbit [22]). However, a static electric
field applied parallel to the microwave polarization axis
can be used to enforce stability of the driven configura-
tion in all three spatial dimensions [20]. This suggests that
nondispersive two-electron wave packets can be built on
these stabilized resonances, and, on the basis of semiclas-
sical considerations, at experimentally accessible quantum
numbers of doubly excited helium [21,23]. Yet, this con-
jecture remains to be corroborated by an exact quantum
treatment.

With the presently available computational facilities,
full blown quantum ab initio calculations of highly cor-
related two-electron wave packet states under electromag-
netic driving are prohibitive. However, since the stabilizing
static field confines the wave packet to the near vicinity
of the field polarization axis, essential properties of these
wave packets appear accessible through the restriction of

the quantum dynamics along this axis. Indeed, nondisper-
sive two-electron wave packets associated with the classi-
cal resonances are found in quantum calculations on the
collinear model atom, as we have already reported in a
previous letter [24]. Here we shall give detailed account of
our quantum treatment of these objects, identify them as
special eigenstates in the Floquet spectrum of the driven
atomic system (alike their counterparts in driven hydrogen
atoms), and investigate their characteristic properties.

To make the present contribution self-contained, we
start out in Section 2 with a review of the classical dy-
namics of the driven frozen-planet configuration, which
was already described elsewhere [20,21]. Section 3 is de-
voted to the formulation of the quantum eigenvalue prob-
lem for the collinear model. As a first application thereof,
we study the unperturbed collinear atom in Section 4,
what provides a remarkable example of regular dynamics
in an atomic two-electron system. In Section 5, we show
how the nondispersive wave packets emerge in the spec-
trum of driven helium (Sect. 5.1) and discuss their life-
times (Sect. 5.2), as well as their properties in presence of
an additional static electric field (Sect. 5.3).

2 Classical dynamics of the driven
frozen-planet configuration

2.1 The frozen-planet configuration of helium

In atomic units, which are used throughout this paper,
the classical Hamiltonian of the electromagnetically driven
helium atom reads

H =
p2

1

2
+

p2
2

2
− Z

|r1| − Z

|r2| +
1

|r1 − r2|
+ F(t) (r1 + r2), (1)

with ri = (xi, yi, zi) and pi = (pix, piy, piz) the position
and the momentum of electron i = 1, 2, respectively, Z = 2
the nuclear charge, and

F = (F cosωt+ Fst) ez (2)

the external, linearly polarized driving at frequency ω
and amplitude F , possibly superimposed by an additional,
static component with field strength Fst (ez represents the
unit vector along the z-axis). In analogy to driven hydro-
gen [25] as well as to the unperturbed helium atom [26],
the Hamiltonian (1) exhibits general scaling laws: the clas-
sical dynamics generated by (1) remain invariant if all
variables and parameters of the system are transformed
according to

ri �−→ N2 ri (i = 1, 2), (3)
pi �−→ N−1 pi (i = 1, 2),
t �−→ N3 t,

F �−→ N−4 F,

ω �−→ N−3 ω,

H �−→ N−2H,
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Fig. 1. A typical (planar) trajectory of the frozen-planet
configuration. While the inner electron oscillates on eccentric
Kepler trajectories around the nucleus, the outer electron is
dynamically stabilized and remains nearly “frozen” around a
given equilibrium distance. The configuration is stable against
autoionization and represents a large regular region in the clas-
sical phase space of helium.

where N represents an arbitrary, real positive quantity.
Since any classical action scales linearly with N (as does
the product of position and momentum), we shall iden-
tify N with the principal quantum number of the inner
electron, which corresponds to the action variable of its
Kepler orbit. Due to the above scale invariance, we can
restrict our classical phase space analysis to a fixed quan-
tum number N = 1, and use (3) to deduce the actual
phase space structure of the energy range of interest.

Figure 1 shows a solution of the classical equations
of motion generated by (1), which illustrates the frozen
planet configuration we shall focus on throughout this pa-
per. Both electrons are located on the same side of the
nucleus, librating with respect to a common symmetry
axis. While the inner electron oscillates on extremely ec-
centric Kepler trajectories around the nucleus, the outer
electron is dynamically stabilized due to the rapid oscil-
lation of the inner, and remains nearly “frozen” in the
vicinity of an equilibrium distance where the attractive
and repulsive forces due to the other charged particles
cancel each other when averaged over one Kepler cycle of
the inner electron. The configuration is classically stable
against autoionization and defines a relatively large region
of regular motion in the dominantly chaotic phase space of
helium. Exact quantum calculations on doubly excited he-
lium [19] have indeed revealed the existence of long-lived
autoionizing states (of which the energetically lowest one
lies below the N = 3 threshold) which are localized along
the frozen-planet orbit.

For a suitable choice of initial conditions, the motion of
the electrons remains confined to the z-axis, what defines
the subspace of collinear motion. In this simplest case,
the regular frozen-planet dynamics is characterized by two
modes which almost perfectly separate (Fig. 2): the fast
Kepler mode of the inner electron (which is also manifest
in the motion of the outer electron, see Fig. 2b) and the
slow oscillation of the outer electron around the equilib-
rium distance (which also affects the motion of the inner
electron, as a slow modulation of its maximal excursion).

This separation of time scales (the Kepler oscillation
is almost 15 times faster than the slow mode of the outer
electron) allows to treat the frozen-planet dynamics within
the formalism of adiabatic invariants [27]. This defines an

Fig. 2. Collinear trajectory of the frozen-planet configuration.
The positions of the electrons are plotted as a function of time.
We see that the dynamics is characterized by two almost sep-
arable modes: (i) the Kepler mode of the inner electron, which
also manifests in the motion of the outer electron, as shown in
the magnification (b) of the latter’s trajectory; (ii) the slow os-
cillation of the outer electron around the equilibrium distance,
which induces a feeble (and, at this scale, hardly visible) mod-
ulation of the amplitude of the inner electron’s excursion.

-

-

Fig. 3. Effective adiabatic potential describing the slow os-
cillation of the outer electron around its equilibrium position
(see [28]). Intrinsic scales for frequency and field strength can
be inferred from the shape of the potential. The natural scale
of the field strength, FI � 0.03N−4, is given by the maximum
slope of the potential (at z1 � 3.7N2). The frequency scale,
ωI � 0.3N−3, is given by the curvature of the potential at
its minimum at z1 � 2.6N2, i.e., by the frequency of small
oscillations around the equilibrium.

effective potential which describes the slow dynamics of
the outer electron, in the combined field of the nucleus and
of the rapidly oscillating inner electron [28]. As we see in
Figure 3, this potential is attractive Coulombic for large
distances (due to the attraction by the nucleus), strongly
repulsive for short distances (due to encounter with the
inner electron) and exhibits a local minimum at the equi-
librium distance.

From the shape of this potential, we can immedi-
ately infer intrinsic scales for the frequency and the field
strength, which depend only on the inner electron’s quan-
tum number N , and which completely determine the ef-
fect of an external drive on the configuration. The nat-
ural scale for the field strength, FI � 0.03N−4, is given
by the maximum slope of the potential (at z1 � 3.7N2;
throughout the paper, subscript 1 denotes the outer, and
subscript 2 the inner electron), and indicates the maxi-
mum static field that can be applied to the configuration
without ionizing it. The frequency scale ωI � 0.3N−3 is
given by the curvature of the potential at its minimum,
i.e., by the frequency of small oscillations around the equi-
librium position. In the following, we shall study the ef-
fect of an electromagnetic field which resonantly drives
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the outer electron’s slow oscillation, i.e., a field with am-
plitude F < FI and frequency ω � ωI .

2.2 Phase space of the collinear, driven configuration

In the presence of the time-periodic perturbation, the dy-
namics of the collinear, driven frozen-planet evolves in a
five-dimensional phase space spanned by the positions and
momenta of the electrons, and by the phase ωt of the driv-
ing field. A complete visualization of the driven dynamics
within a simple two-dimensional Poincaré surface of sec-
tion is therefore not possible. However, for ω � ωI , and for
field amplitudes F < FI which do not appreciably affect
the Kepler motion of the inner electron, the separation of
time scales allows to map the phase space structure onto a
two-dimensional surface by means of a two-step Poincaré
section method [21,23]. We begin with a simple Poincaré
section by plotting the outer electron’s phase space vari-
ables z1, pz1 whenever the inner electron reaches the nu-
cleus (z2 = 0) – i.e., whenever the phase of the Kepler
oscillation assumes a fixed value. In the time domain, the
points obtained by this section are separated by the Kepler
period which is much shorter than any other time scale in
the system. The dynamics generated by the slow modes
– i.e., the outer electron’s oscillation within the effective
potential, as well as the external driving – is therefore very
well monitored by this sequence of points.

Neglecting the effect of resonances between fast and
slow dynamics, the intersection of the Lagrangian mani-
fold with the surface defined by z2 = 0 can now be very
well approximated by a cubic interpolation between sub-
sequent points in the above sequence. This yields a con-
tinuous trajectory which can be used to perform a second
Poincaré section, by fixing the phase of the driving field
ωt = φ0 (mod 2π). As a consequence, we effectively plot
the outer electron’s position and momentum for z2 = 0
and for fixed ωt. The reduction of the phase space to a
two-dimensional surface is completed by restricting the
initial conditions to those with fixed value N = 1 of the
inner electron’s action. This latter quantity represents an
adiabatic invariant of the system and therefore remains
nearly constant as time evolves.

Figure 4 shows the Poincaré section that is obtained
by the two-step method described above, for fixed fre-
quency ω = 0.2N−3 < ωI , fixed driving phase ωt = 0,
and for variable field amplitude F . In the unperturbed
case (F = 0, Fig. 4a), we recognize a regular phase space
structure, with closed curves corresponding to the regu-
lar oscillation of the outer electron within the effective
potential. If we switch on the driving field, phase space
turns mixed regular-chaotic. The bounded frozen-planet
dynamics is now represented by a local regular region cen-
tered around the equilibrium point, outside which the dy-
namics is chaotic and leads to ionization. This remaining
regular region is, due to the Kolmogorov-Arnold-Moser
(KAM) theorem [27], still large for weak field amplitudes
(F = 0.001N−4, Fig. 4b), but decreases in size with in-
creasing F . As a consequence of the Poincaré-Birkhoff
theorem [27], elliptic substructures, induced by nonlinear
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Fig. 4. Phase space of the collinear, driven frozen-planet
configuration, for variable field amplitudes, (a) F = 0,
(b) 0.001N−4, (c) 0.005N−4, at fixed driving frequency ω =
0.2N−3. The momentum pz1 of the outer electron is plotted
versus its position z1 at fixed action N = 1 of the Kepler
mode, fixed position z2 = 0 of the inner electron, and fixed
phase ωt = 0 (mod 2π) of the driving field [21,23]. The regular
phase space of the unperturbed atom (a) turns mixed regular-
chaotic in presence of the external perturbation (b, c). The
nonlinear 1:1 resonance between the driving field and the un-
perturbed oscillation of the electron gives rise to a substructure
at F = 0.001N−4 (b) (centered around z1 � 4.8N2), which
transforms into a separate regular island within the chaotic sea
at larger field amplitude F = 0.005N−4 (c).

resonances between the external driving and the unper-
turbed oscillation of the outer electron, emerge within
the regular region. The prominent substructure located
around z1 � 4.8N2 for F = 0.001N−4 (Fig. 4b) corre-
sponds to the 1:1 resonance where one oscillation cycle of
the outer electron is completed after precisely one period
of the driving field.

At larger field amplitude (F � 0.003N−4 for the fre-
quency used in Fig. 4), the field-induced resonance even-
tually disconnects from the rest of the regular domain.
The phase space then exhibits two separate, large reg-
ular islands embedded into the chaotic sea (see Fig. 4c
at F = 0.005N−4): the intrinsic island (centered around
z1 � 2.5N2 in Fig. 4c) which is essentially due to the
intrinsic nonlinear frozen-planet dynamics with the ex-
ternal field acting only as a small perturbation, and the
field-induced 1:1 resonance island (centered around z1 �
4.9N2 in Fig. 4c) which arises from the combination of two
equally important nonlinear components: the coupling to
the external driving field and the internal interactions be-
tween the charged particles of the atom.

Figure 5 illustrates the effect of tuning the frequency
ω at fixed field amplitude F = 0.005N−4. With increas-
ing ω, the field-induced resonance shifts towards lower ex-
citations within the effective potential, i.e., towards un-
perturbed orbits with higher frequencies. Consequently,
the resonance island is located closer (as compared to
Fig. 4c) to the equilibrium distance for ω = 0.25N−3

(Fig. 5a) and finally undergoes a smooth transition into
the intrinsic island at ω = 0.3N−3 � ωI (Fig. 5b). Above
the intrinsic frequency ωI – which corresponds to the max-
imum frequency of free oscillations within the effective po-
tential – the electromagnetic field can no longer induce a
1:1 resonance. Resonances of higher order, however, are
still possible (e.g., the 2:1 resonance, where one period of
the outer electron is completed precisely after two field
cycles; the elliptic islands created by this resonance are
located at z1 � 4N2 and pz1 � ±0.2N−1 in Fig. 5c).
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Fig. 5. Phase space of the collinear, driven frozen planet con-
figuration for variable driving frequency, (a) ω = 0.25N−3,
(b) 0.3N−3, (c) 0.4N−3, at fixed amplitude F = 0.005N−4

and phase ωt = 0 of the drive. With increasing ω, the 1:1 res-
onance island (centered around z1 � 3.9N2 in (a)) shifts to-
wards the equilibrium distance, and finally undergoes a smooth
transition into the intrinsic island at ω = ωI = 0.3N−3 (b).
The two islands at z1 � 4N2, pz1 � ±0.2N−1 for ω = 0.4N−3

(c) are induced by the 2:1 resonance where one period of the
outer electron’s motion matches two field cycles.

Fig. 6. Phase space of the collinear, driven configuration for
variable phases of the driving field, (a) ωt = 0, (b) π/2,
(c) π, at fixed frequency ω = 0.2N−3 and field amplitude
F = 0.005. While the intrinsic island remains basically at rest
during time evolution, the field-induced 1:1 resonance island
faithfully traces the resonantly driven trajectory of the outer
electron.

The crucial qualitative difference between the intrinsic
island and the field-induced resonances is best illustrated
by visualizing the phase space structure for different times,
i.e., by performing the above two-step Poincaré section for
different phases ωt of the driving field. Figure 6 shows the
phase space of the driven configuration at ω = 0.2N−3,
F = 0.005N−4, for the field phases ωt = 0, π/2, and π.
We see that the intrinsic island remains basically at rest
during the time evolution. The field-induced 1:1 resonance
island, on the other hand, oscillates once around the in-
trinsic island within one field cycle.

2.3 Stabilization against deviations from collinearity

In contrast to their counterparts in driven hydro-
gen [16,29], however, the resonance islands of the collinear,
driven frozen-planet dynamics are not embedded in a regu-
lar phase space domain of the three-dimensional problem.
Figure 7 shows the evolution of the configuration launched
at the center of the 1:1 resonance island of Figure 5a (i.e.,
for ω = 0.25N−3 and F = 0.005N−4) if the outer electron
is slightly displaced from collinearity by a small transverse
component y1 = 0.01N2 of its position. Due to the effec-
tive torque exerted by the driving field on the configura-
tion, the initially small deviation from the field polariza-
tion axis increases rapidly with time, until, after about
ten field cycles, both electrons “flip over” to the other
side of the nucleus. The configuration then performs sev-

Fig. 7. Unstable trajectory of the driven frozen-planet con-
figuration in two-dimensional configuration space. The con-
figuration is initially launched at the center of the collinear
1:1 resonance island for ω = 0.25N−3 and F = 0.005N−4 (see
Fig. 5a), except for a small transverse component y1 = 0.01N2

of the outer electron’s position. The resulting time evolution
of the trajectory is depicted from 0 to 15 field cycles in (a),
from 15 to 30 field cycles in (b), and from 75 to 91 field cy-
cles in (c). We see that the initially small deviation of the
configuration from the z-axis increases with time, until, after
approx. 10 field cycles, both electrons flip over to the other
side of the nucleus (a). The configuration then performs sev-
eral chaotic rotations around the nucleus (b), before the cor-
relation between the electrons eventually breaks down and the
atom ionizes (here at about 90 field cycles) (c).

eral chaotic rotations around the center, until the correla-
tion between the electrons eventually breaks down and the
atom ionizes after a subsequent electron-electron collision.
This transverse instability turns out to be characteristic
not only for the 1:1 resonance, but also for the intrinsic
island, as well as for the 2:1 and for higher resonances (ex-
ceptions are tiny resonances of higher order, such as the
3:2 resonance, see [21,23]). To launch nondispersive wave
packets along the frozen-planet orbit of the real three-
dimensional atom, an additional perturbation of the atom
is therefore required, in order to stabilize the electronic
motion with respect to deviations from collinearity.

In fact, such a stabilization can be achieved by adding
a static component Fst to the electromagnetic field (see
Eq. (2)). In resonantly driven hydrogen, a static field, ap-
plied parallel to the microwave polarization axis and forc-
ing the electron away from the nucleus, tends to confine
the electron to the immediate vicinity of the polarization
axis [16,22,30]. This confinement effect can now be im-
ported to stabilize the motion of the driven frozen-planet
– by preventing the configuration from chaotic rotations.
Indeed, for weak static fields, Fst � 0.1F , and for not
too strong driving amplitudes F (e.g., F = 0.005N−4 at
ω = 0.25N−3, see Fig. 8), small deviations from collinear-
ity do not lead to ionization. Instead of drifting away to
the other side of the nucleus (as in the absence of the static
field, Fig. 8a), the electrons are forced back towards the
field polarization axis (Fig. 8b), and the configuration per-
forms stable, quasi-periodic oscillations around the funda-
mental orbit shown in Figure 8c.

This stabilization mechanism permits to embed the
nonlinear resonances into regular regions within the un-
restricted phase space of three-dimensional motion, while
the electronic dynamics within the collinear subspace is
only marginally modified by the weak static field. We
find that this multidimensional phase space region is
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Fig. 8. Stabilization of the transverse frozen planet dynamics
at ω = 0.25N−3 and F = 0.005N−4. As in Figure 7, the
configuration is initially launched at the center of the collinear
1:1 resonance island, except for a small transverse component
y1 = 0.01N2 of the outer electron’s position. Without the
static field (a), the electrons drift away from the z-axis and
enter into chaotic rotations around the nucleus. A static electric
field, Fst = 0.1F , along the z-axis, directed such as to force
the electrons into the positive z-direction, counterbalances this
drift mechanism (b); the electrons are driven back towards the
z-axis, and the configuration performs stable, quasi-periodic
oscillations around the fundamental orbit shown in (c).

particularly large for the 2:1 resonance (Fig. 5c): by means
of the semiclassical Einstein-Brillouin-Keller (EBK) quan-
tization criterion [31] (which typically yields rather pes-
simistic results, see [32]), we estimate that the minimum
principal quantum number of the inner electron needed to
fully localize a quantum state on the stabilized 2:1 reso-
nance island lies in the range N � 50 . . . 100 [21,23]. Such
double excitations are clearly beyond reach in state-of-
the-art experiments on helium, which currently can ex-
cite N � 10 [33]. However, they should be accessible in
earth alkaline atoms such as barium, where multi-step
isolated-core excitations [34] permit selective transitions
up to states with quantum numbers N � 100 of the in-
ner electron [35]. At N = 50, the field parameters that
are required to generate the 2:1 resonance islands of Fig-
ure 5c are given by ω/(2π) � 20 GHz and F � 8 V/cm.
Hence, by virtue of this semiclassical argument, nondisper-
sive two-electron wave packets appear realizable in earth
alkalines, at microwave frequencies and field amplitudes
commonly used in state-of-the-art ionization experiments
on one-electron atoms [36].

3 Formulation of the quantum eigenvalue
problem

3.1 The collinear Hamiltonian

The preceding classical analysis strongly suggests the exis-
tence of nondispersive wave packets which propagate along
the frozen-planet orbit, together with a rough estimate of
the minimum required quantum number for their unam-
biguous identification in the spectrum of doubly excited
helium. Reliable information on the quantum properties
of the field-induced resonances, however, can only be ob-
tained by quantum calculations. In particular, classical
mechanics tells nothing about the lifetimes of the wave
packets, since these are associated with a classically for-
bidden tunneling process. It is, on the other hand, also
clear that a full-blown quantum treatment of such highly

correlated states under external driving is still beyond
reach of the presently available computational facilities.
For unperturbed helium, where the total angular momen-
tum is conserved, autoionizing states can presently be cal-
culated for quantum numbers of the inner electron reach-
ing N � 15 . . . 20 [19,37]. Therefore, in the near future
there is not much hope for an accurate treatment of the
periodically driven problem, with a large number of angu-
lar momenta coupled by the field, at comparable or even
higher excitations.

Nevertheless, essential qualitative information on the
wave packets can be obtained by an approximate quan-
tum description, which is motivated by the classical mo-
tion of the electrons. As discussed in the previous section,
the static field confines the electrons to the vicinity of the
field polarization axis (Fig. 8), without major modifica-
tions of the dynamics in the collinear subspace. Hence,
also a quantum state associated with the transversely sta-
bilized wave packet orbit should exhibit strong localiza-
tion close to the z-axis. We therefore expect that essential
properties of such a quantum state are reproduced by a
collinear model which restricts the electrons to move along
the field polarization axis. This, however, requires that the
model takes into account the full Coulomb interaction be-
tween the charged particles (i.e., that it really represents
the exact quantum analog of the classical, collinear config-
uration). A smoothing of the Coulomb singularity, which is
frequently employed in one-dimensional models of driven
atoms (e.g., [38]), may not be permitted, since it allows
the electrons to penetrate to the other side of the nucleus,
what inevitably destroys the frozen-planet configuration.

Consequently, we write the Hamiltonian that generates
the quantum dynamics of the driven collinear configura-
tion as

H = −1
2
∂2

∂z2
1

− 1
2
∂2

∂z2
2

− Z

z1
− Z

z2
+

1
z1 − z2

− F

ω
sinωt

(
1
i
∂

∂z1
+

1
i
∂

∂z1

)
− Fst (z1 + z2), (4)

where the exact Coulomb interactions between the charged
particles are taken into account. Here, z1 and z2 represent
the Cartesian (not spherical) coordinates of the electrons
along the field polarization axis, with 0 < z2 < z1 < ∞
– i.e., both electrons are located on the same side of the
nucleus, with electron 2 closer to it than electron 1. Note
that the electrons effectively appear as distinguishable par-
ticles. This ansatz is consistent with the restriction to
collinear motion, since in the classical collinear configu-
ration the electrons are not able to pass each other and
to exchange their positions, nor do their quantum wave
functions appreciably overlap at the instant of closest
approach (what can be deduced from the classical dy-
namics sketched in Fig. 2, amended by Heisenberg’s un-
certainty). Furthermore, it represents quite good an ap-
proximation also for the three-dimensional frozen-planet
configuration, since the latter is characterized by a very
small overlap between the outer and the inner electron’s
densities, and therefore by a very small splitting between
singlet and triplet states [19]. Precisely as for the classical
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Hamiltonian, the external electric field consists of an oscil-
lating part F – which, in contrast to (1), is incorporated in
the velocity gauge in order to ensure better convergence of
the numerical calculation [39] – and of a static component
Fst > 0 which forces the electrons away from the nucleus.

In a last step, we introduce the coordinates

ξ = z1 − z2 , η = z2 , (5)

which independently lie in the range 0 ≤ ξ, η ≤ ∞.
In these perimetric coordinates [40], the Hamiltonian is
rewritten as

H = − ∂2

∂ξ2
− 1

2
∂

∂η2
+

∂2

∂ξ∂η
− Z

ξ + η
− Z

η
+

1
ξ

− F

ω
sinωt

1
i
∂

∂η
− Fst (ξ + 2η), (6)

what will turn out as a convenient form for our further
treatment.

3.2 Floquet theory and complex scaling

Due to the temporal periodicity of the Hamiltonian, the
Schrödinger problem represented by (6) is conveniently
treated in the framework of Floquet theory [41,42]: any
solution of the Schrödinger equation can be expanded in
a set of 2π/ω-periodic quasienergy-eigenfunctions ψ(E)

t ,

ψt =
∫∑

dECEψ
(E)
t e−iE t,

with ψ
(E)
t+2π/ω = ψ

(E)
t , CE ∈ C (7)

which satisfy the Floquet eigenvalue equation
(
H − i

∂

∂t

)
ψ

(E)
t = E ψ(E)

t . (8)

A Fourier series expansion of ψ(E)
t ,

ψ
(E)
t =

∞∑
k=−∞

ψ̂
(E)
k ei k ω t, (9)

yields a time-independent eigenvalue problem for the
Fourier components ψ̂(E)

k , where the effective Hamiltonian
matrix contains the stationary part of the Hamiltonian
shifted by kω as diagonal, and the Fourier components of
the periodic driving as off-diagonal (block) elements. This
results in an ω-periodic spectrum of quasienergies E .

For atomic systems, the Floquet spectrum is absolutely
continuous: each bound state of the unperturbed atom is
coupled to the atomic continuum via multiphoton transi-
tions, and therefore appears as a resonance structure in
the spectrum – in analogy to autoionizing states in mul-
tiply excited atoms, which are coupled to the continuum
via configuration interaction [43] (see, e.g., [44] for a case

in triply excited lithium). In order to separate these res-
onances from the flat background of the continuous spec-
trum, we use the method of complex scaling [45–47]. It
consists in the complexification of coordinates and mo-
menta (not of time!) according to1

ξ −→ ξeiθ −i
∂

∂ξ
−→ −i

∂

∂ξ
e−iθ

η −→ ηeiθ −i
∂

∂η
−→ −i

∂

∂η
e−iθ, (10)

through application of the nonunitary complex scaling op-
erator R(θ) on ψ(E)

t ,

R(θ)ψ(E)
t (ξ, η) = eiθψ

(E)
t (ξeiθ, ηeiθ) =: ψ(E)

θ,t (ξ, η) . (11)

Accordingly, the Hamiltonian is transformed as

H −→ Hθ = R(θ)H R(−θ), (12)

what turns (8) into a complex symmetric rather than
hermitian eigenvalue problem, with eigenvalues in the
lower half of the complex plane. In particular, resonances
of the “real” eigenvalue problem (i.e., at θ = 0) ap-
pear, for finite θ, as isolated, discrete complex eigenvalues
E = E − iΓ/2: their real and imaginary parts correspond
to the energies E and to the half widths at half maximum
Γ/2 (HWHM) of the resonances, respectively.

3.3 Expansion in Sturmian basis functions

The complex-scaled Floquet Hamiltonian is now expanded
in the product basis

{S(α)
n (ξ)S(β)

m (η): n,m ≥ 1} (13)

composed of the real-valued Sturmian functions [48]

S(α)
n (ξ) =

(−1)n

√
n

2ξ
α

exp
(
− ξ

α

)
L

(1)
n−1

(
2ξ
α

)
, (14)

where the L(1)
n−1 denote the associated Laguerre polyno-

mials [49]. The real parameter α > 0 fixes the length
scale of the Sturmians. As a consequence, the product ba-
sis (13) exhibits two independent scaling parameters, α
and β, which permit the optimal tuning of the basis with
respect to the relative excitation of the electrons. Also
note that the Sturmians S(α)

n scale at least linearly with
ξ, for ξ → 0. This implies that the Coulomb singularities
of the Hamiltonian (6) do not lead to divergent matrix
elements in the product basis (13).

Multiplication of (8) by ξη leaves 1/(ξ+ η) as the only
non-polynomial contribution in ξ and η, after inserting (6).
We factor out (ξ + η) from the eigenvectors of (8),

ψ
(E)
t (ξ, η) =: (ξ + η)φ(E)

t (ξ, η) , (15)

1 Note that, due to (5), complexification of ξ, η and of z1, z2
is equivalent.
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and expand φ(E)
t (ξ, η) in the Sturmian product basis. This

factorization is justified since the triple collision between
the electrons and the nucleus – i.e., the event that cor-
responds to ξ = η = 0 – is classically suppressed in the
collinear frozen-planet dynamics (in contrast to the eZe
configuration with the electrons on opposite sides of the
nucleus); hence, the quantum probability near ξ = η = 0
is very small. Note that, due to normalization, (15) entails
a different transformation law for φ(E)

t (ξ, η) as compared
to ψ(E)

t (ξ, η), under the action of R(θ):

R(θ)φ(E)
t (ξ, η) = e2iθφ

(E)
t (ξeiθ, ηeiθ) =: φ(E)

θ,t (ξ, η) . (16)

All together, the generalized Floquet eigenvalue equations
finally reads

(ξ + η)ξη(H0θ + kω − E)(ξ + η)φ̂(E)
θ,k(ξ, η) + (ξ + η)

× ξηVθ(ξ + η)(φ̂(E)
θ,k−1(ξ, η) − φ̂

(E)
θ,k+1(ξ, η)) = 0 , (17)

with the complex scaled operators H0θ, Vθ given by

H0θ =
(
− ∂

∂ξ2
− 1

2
∂

∂η2
+

∂2

∂ξ∂η

)
e−2iθ

+
(
− Z

ξ + η
− Z

η
+

1
ξ

)
e−iθ

−Fst (ξ + 2η) eiθ, (18)

Vθ =
F

2ω
∂

∂η
e−iθ, (19)

and the φ̂(E)
θ,k(ξ, η) the Fourier components (see (9)) of the

wavefunction φ(E)
θ,t (ξ, η). Introducing the scalar product

〈̃f |g〉 ≡
∫ ∞

0

∫ ∞

0

1
ξ η

f(ξ, η) g(ξ, η) dξ dη , (20)

with respect to which the Sturmians are orthogonal, we
obtain a complex symmetric eigenvalue problem.

All the opertor-valued terms acting on the φ̂(E)
θ,k and

φ̂
(E)
θ,k±1 in (17) can now be expressed as polynomials of the

elementary ladder operators of the Sturmian basis (14)
(see [23,49]). Hence, upon expansion of the Fourier com-
ponents φ̂(E)

θ,k in the Sturmian product basis (13),

φ̂
(E)
θ,k(ξ, η) =

∞∑
m,n=1

C(k)
n,m S(α)

n (ξ)S(β)
m (η) , (21)

we obtain strict selection rules which permit nonzero cou-
plings between the coefficients C(k)

n,m and C
(k′)
n′,m′ only if

|n − n′| ≤ 4, |m −m′| ≤ 4, and |k − k′| ≤ 1. The eigen-
value problem thus becomes a sparse, complex symmetric
matrix equation with rather narrow bandwidth, what al-
lows to apply efficient diagonalization methods based on
the Lanczos algorithm with inverse iteration [50]. Con-
vergence of the complex eigenvalues is controlled by in-
creasing the number of Fourier components φ̂(E)

θ,k and of

the basis functions S(α)
n (ξ), S(β)

m (η) to be retained in the
diagonalization, as well as by variation of the complex
scaling angle θ, and of the length scale parameters α and
β which specify the (truncated) basis set (14) used in the
calculation. Typical matrix dimensions are 64 000 (size)
× 1 300 (bandwidth) for Floquet spectra in the vicinity of
N � 8, with n � 1 . . . 150, m � 1 . . . 25, and k � −8 . . . 8,
for2 ω � 0.2N−3. Real and complex scaling parameters
are fixed at θ = 0.1, α = 6, β = 2 in the above energy
range. With these choices (and similar choices for other
values of N), all numerical results presented hereafter are
converged to an absolute accuracy of 10−15 . . . 10−13 a.u.

3.4 Visualization of the wavefunction

The energies E and widths Γ extracted from the complex
eigenvalues E allow to classify the Floquet states in se-
ries and to determine their stability; in general, however,
they do not provide any direct information about the lo-
calization properties of these states in configuration or
in phase space, which in themselves can carry important
physical information. To extract the latter from the eigen-
states of the complex symmetric eigenvalue problem (17),
some care has to be taken, due to the non-unitarity of the
dilation operator R(θ). The technical and computational
details of this procedure are described in detail in [23,51],
and we only import here those results of immediate rele-
vance for our specific purpose.

We first need the density of the physical wave function
(at real energy E) ψ(E)

t (z1, z2), which is obtained (up to
a normalization constant), for a well-isolated resonance
energy E = E−iΓ/2 (i.e., |Ej−E| � Γ , ∀Ej �= E), from the
image of ψ(E)

θ,t under the inverse dilation operator R(−θ),

R(−θ)ψ(E)
θ,t = R(−θ)

∞∑
k=−∞

z1φ̂
(E)
θ,k (z1 − z2, z2) eikωt ,

(22)

together with the image of the corresponding left eigen-
vector ψ(E)

θ,−t [23,51]3:

|ψ(E)
t (z1, z2)|2 � Re〈z1, z2|R(−θ)|ψ(E)

θ,t 〉
×

〈
z1, z2|R(−θ)|ψ(E)

θ,−t

〉
. (23)

Correspondingly, the Husimi representation Q(z1, p1) [23,51]
in the classical phase space coordinates of the outer elec-
tron (subscript 1) is obtained by projection on Gaussian

2 Note that a nonvanishing static field component does only
increase the bandwidth of the Floquet matrix (|n − n′| ≤ 4
instead of |n − n′| ≤ 3 [23]) but not its dimension, which is a
peculiarity of the absence of the angular momentum degree of
freedom in our collinear model.

3 Only the time-dependent part of the wave function is com-
plex conjugated to transform right into left eigenvectors, since

the Fourier components ψ̂
(E)
θ,k of the eigenvectors obey the nor-

malization condition for complex symmetric rather than Her-
mitian matrices [6,23]!
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wave packets χp1(z1) which are centered at position z1
and propagate with average momentum p1:

Q(z1, p1) � Re
〈
χp1(z1)|R(−θ)|ψ(E)

θ,t

〉

×
〈
χp1(z1)|R(−θ)|ψ(E)

θ,−t

〉
, (24)

where the bar denotes complex conjugation.
In order to establish a precise analogy with our above

construction of the two-step Poincaré section of the classi-
cal dynamics (see Sect. 2.2), we define the overlap matrix
element in (24) as

〈χp1(z1)|R(−θ)|ψ(E)
θ,t 〉 =

∫ ∞

0

dz′1 〈z′1, z(0)
2 |R(−θ)|ψ(E)

θ,t 〉

× exp
(
−1

2
ωs(z1 − z′1)

2 − ip1z
′
1

)
· (25)

Thus, the quantum phase space probability density is eval-
uated at fixed time t (corresponding to a fixed phase ωt of
the driving field), and at fixed position z(0)

2 � 0 of the in-
ner electron. The squeezing parameter ωs in this definition
determines the resolution of the Husimi distribution in
position and momentum, respectively. Large values of ωs

yield good resolution in position space and bad resolution
in momentum space, and vice versa for small values of ωs.
For quantum states associated with the frozen-planet con-
figuration, the most appropriate choice for ωs is given by
the intrinsic frequency scale ωI of the configuration (see
Sect. 2.1) – this is the value at which the Gaussian wave
packet χp(q) optimally fits the ground state of the effective
potential experienced by the outer electron. We therefore
choose ωs = 0.3N−3 (see Fig. 3), with N the inner elec-
tron’s principal quantum number of the state to be visual-
ized (note that N remains approximately a good quantum
number in the presence of the external field, if the latter
is not too strong).

4 The unperturbed collinear atom

With the above theoretical machinery for our quantum
treatment of the driven, collinear frozen planet configu-
ration at hand, we can now study in detail its physical
properties. As a “warm-up”, and equally so as a first as-
sessment of the physical implications of the restricted di-
mensionality of our problem, we start out with the spectral
properties of the unperturbed (F = Fst = 0) frozen planet
configuration confined to a single dimension of configura-
tion space.

4.1 Energies and phase space distributions

Corresponding to the fact that its classical counterpart
is almost completely integrable (Fig. 4a), the quantum
spectrum of the unperturbed collinear frozen-planet con-
figuration is characterized by typical signatures of regular

Fig. 9. Energies and ionization rates Γ/2 (HWHM) of the
autoionizing states of collinear helium belonging to the series
labeled by the inner electron’s quantum number N = 8. Note
the relatively small widths of the lowest members of the series,
which we attribute to the fact that these states are fully local-
ized within a regular, bound domain in phase space. The cou-
pling mediated by a driving field with frequency ω = 0.2N−3

is sketched by the arrows of length ω. The particularly strong,
near-resonant coupling between the second and the third state
(at E = −0.034 and E = −0.0336, respectively) gives rise to
the nondispersive two-electron wave packet associated with the
classical 1:1 resonance (see Fig. 13).

dynamics. In particular, each autoionizing state can be
classified by two quantum numbers which are associated
with the two separating modes of the classical dynamics,
as discussed in Section 2.1 (in contrast to the chaotic eZe
configuration [52], where such a classification breaks down
already for moderate double excitations). The quantiza-
tion of the inner electron’s Kepler mode gives rise to the
quantum number N ≥ 1. For each N , we obtain a series of
autoionizing states (or bound states, for N = 1) which are
labeled by the quantum number n. This quantum num-
ber arises from the quantization of the outer electron’s
oscillation within the effective potential, which, as in one-
electron atoms, gives rise to Rydberg series and continua,
due to its asymptotic 1/r dependence.

As an example, we show the energies and widths of
the autoionizing states of the series labeled by N = 8 in
Figure 9. We clearly recognize a regular Rydberg progres-
sion towards the N = 8 threshold at E = −0.3125 a.u.
States belonging to different series are energetically well
separated: the lowest quantum state with N = 9 lies at
E � −0.027 a.u., and the Rydberg series of N = 7 termi-
nates at E � −0.04 a.u. As was verified numerically, an
energetic overlap of series belonging to different quantum
numbers N occurs only above N = 20.

The near-separability of the two modes associated with
the electrons is furthermore reflected by the probability
density (23) of the eigenstates (with k = 0 in (22), due
to the time-independence of the problem). In the coordi-
nate z2 of the inner electron, the wavefunctions are essen-
tially given by the Nth hydrogenic eigenstate of the one-
dimensional atom (most reminiscent of extremal parabolic
states of three-dimensional atomic hydrogen), whereas
in z1 they display distinct excitations within the effec-
tive potential governing the outer electron’s motion. In
Figure 10, the fundamental (a1), the first excited (a2),
and the second excited state (a3) of the effective poten-
tial (for N = 8), labeled by the outer electron’s quantum
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Fig. 10. Wavefunctions of the first three eigenstates of the
N = 8 series: (a1, b1) lowest (n = 1), (a2, b2) second (n = 2),
(a3, b3) third state (n = 3) of the series. (a1–a3) Probabil-
ity densities as a function of the coordinates of the outer (z1)
and of the inner (z2) electron; (b1–b3) Husimi densities as a
function of position and momentum of the outer electron (the
contour lines are plotted on a linear scale). In the coordinate
of the inner electron, the wavefunctions are essentially given
by the Nth hydrogenic eigenstate of the unperturbed, one-
dimensional atom, whereas in z1 they display different excita-
tions within the effective potential (see Fig. 3). Their Husimi
distributions clearly show that they are well localized along reg-
ular tori in the underlying classical phase space (see Fig. 4a).

numbers n = 1, n = 2, and n = 3, respectively, are plot-
ted in configuration space. The intimate correspondence
of these eigenstates with regular structures of the under-
lying classical phase space is highlighted by their Husimi
distribution (24) shown in Figures 10b1–10b3. Comparing
these phase space projections of the quantum eigenfunc-
tions with the corresponding Poincaré surface of section
(Fig. 4a) unambiguously illustrates the neat localization
of the eigenfunctions along invariant tori of the classical
dynamics.

4.2 Ionization rates

The “regular” character of the wavefunctions is also man-
ifest in the ionization rates Γ/2 (HWHM) of the associ-
ated spectral resonances. We see in Figure 9 that for the
N = 8 series these widths first increase with n, and then
decrease again towards the ionization threshold. While
this latter decrease is attributed to general scaling laws
of Γ in the Rydberg regime of atomic one-electron excita-
tions [53], the extraordinary stability of low n states is a
consequence of their full localization in the bound part of
phase space. A coupling to the unbound, ionizing domain
is then only possible via a classically forbidden process –
tunneling through the phase space barriers that confine
the frozen-planet configuration.

This latter mechanism is beautifully illustrated in a
plot of the ionization rate of the lowest state (n = 1) as
a function of the inner electron’s quantum number N . In
Figure 11c, we observe that the width of this lowest eigen-
state in the effective potential of Figure 3 first increases
for N ≤ 4 (due to imperfect localization of the eigenstate
on classical phase space structures in the deep quantum
regime) and then decreases exponentially with N . This
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Fig. 11. Energies (a) and ionization widths (c) of the lowest
autoionizing eigenstate n = 1 (with the outer electron local-
ized at the minimum of the effective potential of Fig. 3), plot-
ted as a function of the inner electron’s quantum number N .
We see that the ionization rates decrease near-exponentially
for N > 4, what suggests that the associated eigenstates are
fully localized in the bound part of phase space, and only de-
cay via tunneling through the classical phase space barriers
that protect the frozen-planet configuration against classical
autoionization. These rates of the collinear model are com-
pared to the energies (b) and decay rates (d) of the analogous
frozen-planet eigenstates in three-dimensional helium, pub-
lished in reference [19], for singlet (+) and triplet (◦) symmetry.
While the energies agree quite well with their collinear coun-
terparts (a, b), the ionization rates of the three-dimensional
frozen-planet states (d) lie by several orders of magnitude
above the widths of the corresponding eigenstates of the one-
dimensional model (c) (note the different scales of the vertical
axes in (c) and (d)). This indicates that the autoionization of
the three-dimensional frozen-planet states is mediated by the
transverse degrees of freedom of the configuration.

exponential law represents a clear signature of quantum
tunneling: the rate associated with such a process gener-
ally decreases exponentially with the semiclassical action
SN across the tunneling barrier, and this latter quantity
scales, as any other action variable, linearly with N , due
to the general scaling laws (3) – i.e., SN = NS1, with
S1 � 0.8 directly extracted from Figure 11c.

For comparison, we plot in Figure 11d the ioniza-
tion rates of the near-collinear frozen-planet states in
three-dimensional helium (with minimal excitations in
the transverse degrees of freedom), as reported in [19].
Also these widths decrease on average exponentially in N ,
with a scaled action S1 not too different from our one-
dimensional model (fluctuations with respect to this ex-
ponential decrease arise from the mixed regular-chaotic
phase space structure of three-dimensional helium, see
also the discussion in Sect. 5.2). However, the three-
dimensional rates are systematically enhanced by several
orders of magnitude as compared to the one-dimensional
model! This suggests that the three-dimensional helium
dynamics provides efficient decay channels associated
with the transverse degrees of freedom, which are not
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incorporated in the restricted one-dimensional dynamics
of our model Hamiltonian (4)4.

On the other hand, the energies of the autoioniz-
ing states of three-dimensional helium agree quite well
with their collinear counterparts, as apparent from Fig-
ures 11a and 11b (apart from a small shift due to the ad-
ditional quantization of the transverse modes in the 3D
configuration [19]). This supports our expectation that
essential localization properties of the eigenstates of the
three-dimensional frozen-planet configuration are well re-
produced by the collinear model.

5 The collinear atom under periodic driving

5.1 Nondispersive wave packets in the Floquet
spectrum

For our investigation of the collinear frozen planet con-
figuration under external driving, we employ the field pa-
rameters ω = 0.2N−3 and F = 0.005N−4 which induce
the classical phase space structure shown in Figure 6,
where both the intrinsic island and the 1:1 resonance are
very well pronounced. The coupling induced by this driv-
ing field is illustrated by the arrows in Figure 9 for the
N = 8 series. We see that a particularly strong interac-
tion is induced between the second (n = 2) and the third
(n = 3) state, since the energetic spacing between these
states is very close to the driving frequency. Provided the
phase space volume of the 1:1 resonance island is large
enough to support a fully localized quantum state (which
is indeed the case for N = 8, as can be semiclassically
estimated by the EBK quantization criterion), this near-
resonant one-photon coupling gives rise to the nondisper-
sive wave packet associated with the classical nonlinear
resonance.

Figure 12a shows the evolution of the quasienergies
associated with the first three Floquet eigenstates of the
N = 8 series, as a function of the field amplitude F (for
fixed driving frequency ω = 0.2N−3, and Fst = 0). In the
limit F = 0, the energies E correspond to the unperturbed
autoionizing levels folded into the Floquet zone due to the
ω-periodicity of the Floquet spectrum. Switching on the
driving field causes level shifts due to the repulsion be-
tween strongly coupled, near-resonant Floquet states. A
particularly significant case is encountered for the state
n = 2, near-resonantly coupled to the states n = 3 and

4 As a side remark, this observation also bears a caveat as
oversimplified models of the three body Coulomb problem are
concerned: often the Coulomb singularities in such 1D model
systems are smoothed such as to prevent the electrons (and
possibly the nucleus) from head-on collisions [54,55], which,
on a first glance, could be most disastrous for the stability of
the 1D dynamics and, hence, enhance its decay probability.
The present comparison of exact (no approximations beyond
dimensionality) 1D and 3D quantum calculations shows that
this is too simplistic an argument and completely neglects dy-
namical stabilization effects which result in such impressively
stable quantum objects as the frozen planet.

Fig. 12. (a) Evolution of the first three states of the N = 8 se-
ries in the Floquet spectrum, for driving frequency ω =
0.2N−3. The quasienergies E are plotted as a function of the
field amplitude F . The diabatic continuation of the second
state (n = 2, upmost circles) undergoes a particularly pro-
nounced, almost linear shift with F . This is consistent with
the wave packet character of the Floquet state into which the
unperturbed n = 2 state evolves (see Fig. 13). (b–d) Ionization
rates Γ of the diabatic continuations of the n = 1 (d), n = 2
(b), and n = 3 state (c). We see that the rates globally increase
with increasing F . Local, pronounced maxima occur at avoided
crossings between these states and energetically higher-lying
eigenstates of the N = 8 series in the Floquet spectrum, as ap-
parent from a comparison with (a) (with the diabatic continu-
ations of n = 1 and n = 3 marked by the encircled eigenvalues
in the lower and the middle part of (a), respectively).

n = 15. Its quasienergy exhibits a pronounced shift at al-
most constant, positive slope. This already indicates the
wave-packet character of the associated eigenfunction in
configuration space, since it reflects a large dynamic dipole
moment of the electronic density (proportional to the ex-
pectation value of the electronic dipole z1, averaged over
one cycle of the drive).

The wave packet character of this latter state is ulti-
mately confirmed by its Husimi density, which is plotted in
Figures 13b1–13b3 for F = 0.005N−4, at driving phases
ωt = 0, π/2, and π. We see that the Floquet eigenfunc-
tion is fully localized on the 1:1 resonance island in phase
space, and that it precisely follows the classical time evo-
lution. The wave packet dynamics in configuration space
is visualized in Figures 13a1–13a3 where we plot the prob-
ability density of the state n = 2 as a function of z1 and z2.
Comparison with Figures 10a1–10a3 show that the eigen-
function is essentially composed of a time-periodic super-
position of the low-lying eigenstates of the N = 8 series.
While nearly stationary in the coordinate z2 of the in-
ner electron, the wave packet oscillates back and forth
in z1, between the turning points of the effective potential
(Fig. 3).

5 Note that the field induced level dynamics which we ob-
serve here is somewhat reminiscent to the level shift of the
lowest three energy levels of a symmetric one dimensional dou-
ble well, under resonant driving of the transition between the
first and second excited state [56]. A more general investigation
of Floquet level dynamics in complex, non-decaying systems
can be found, e.g., in [57].
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Fig. 13. Nondispersive two-electron wave packet of the
N = 8 series, for ω = 0.2N−3 and F = 0.005N−4. We plot
the probability density in configuration space (a1–a3), and the
Husimi density in phase space (b1–b3), of the diabatic con-
tinuation of the state n = 2 (see Fig. 12), at driving field
phases (a1–c1) ωt = 0, (a2–c2) π/2, (a3–c3) π. The correspond-
ing Poincaré sections of the classical phase space are plotted
in (c1–c3). We see that the Floquet wavefunction is well lo-
calized on the 1:1 resonance island, and faithfully tracks its
classical time evolution.

Fig. 14. Husimi distribution of the states n = 1 (a1–a3)
and n = 3 (b1–b3) of the N = 8 series, for ω = 0.2N−3

and F = 0.005N−4, at driving phases ωt = 0 (a1, b1), π/2
(a2, c2), π (a3, b3), compared to the corresponding classical
Poincaré sections (c1–c3). We see that the diabatic continua-
tion of the lowest state of the N = 8 series is fully localized on
the intrinsic island and remains essentially stationary over one
field cycle. The diabatic continuation of the third state, on the
other hand, is associated with the chaotic phase space domain.
More precisely, it is anchored to the unstable fixed point of
the 1:1 resonance and stretches out along the associated sepa-
ratrix structure (see also [8,16] for analogous states in driven
hydrogen atoms).

Quite naturally, for the same field amplitude and fre-
quency as above, the diabatic continuation of the low-
est state n = 1 of the N = 8 series represents the
Floquet state that is anchored to the remainder of the
unperturbed regular structure of the frozen-planet con-
figuration. Figures 14a1–14a3 show its Husimi distribu-
tion which is fully localized on the intrinsic island and
remains nearly stationary over one field period. Further-

Fig. 15. Energies and widths of the nondispersive wave packet
at ω = 0.2N−3 for N = 9 (a1, a2) and N = 10 (b1, b2), as
a function of the scaled field amplitude F/N−4. (a1, b1) Evo-
lution of the quasienergies E in the Floquet spectrum. The
1:1 resonance state (marked by circles) diabatically originates
from the unperturbed state n = 2 at N = 9, and from the
state n = 3 at N = 10. As for N = 8 (see Fig. 12a), its
quasienergy undergoes a significant shift towards higher val-
ues of E with almost constant slope, what indicates the pro-
nounced wave packet character of this eigenstate in configu-
ration space. (a2, b2) Ionization widths of the wave packet
states. As in Figure 12c, local, sharp enhancements of Γ oc-
cur near avoided crossings with higher-lying states of the same
series, which are associated with the chaotic phase space do-
main. Notice that the precise positions and strengths of the
avoided crossings and, consequently, their influence on the wave
packet’s lifetime at a given scaled field amplitude F/N−4, can
be completely different for N (a1, a2) and N + 1 (b1, b2).

more, Floquet states corresponding to higher quantum
numbers n > 2 of the unperturbed system are entirely
associated with the chaotic phase space domain. As an
example, Figures 14b1–14b3 show the Husimi density of
the diabatic continuation of the state n = 3, which is
dominantly localized on the unstable fixed point of the
1:1 resonance (compare Figs. 14b3 and 14c3), and along
the associated separatrix layer.

A similar scenario is encountered for different quantum
numbers N of the inner electron (with adjusted field pa-
rameters ω = 0.2N−3 and F = 0.005N−4). Starting from
N = 5, we find, for each N , one Floquet state that is lo-
calized on the intrinsic island (the diabatic continuation of
the island’s ground state in the unperturbed spectrum),
as well as one nondispersive wave packet state localized
on the 1:1 resonance island, represented by the diabatic
continuation of the second unperturbed state for N < 10,
and by the continuation of the third or a higher state for
N ≥ 10. As for N = 8, these wave packet states are char-
acterized by a pronounced, almost linear level shift with
increasing F towards higher quasienergies (Fig. 15).

Figure 16 compares the Husimi distributions of the
wave packet states for N = 5 and N = 15. Since the
phase space area of the island increases linearly with N
while � remains constant, the electronic density is, with
increasing N , more and more localized around the center
of the 1:1 resonance island. At N = 15, the contour lines
of the Husimi density reproduce the classical island struc-
ture in the Poincaré section already very well. In fact, at
such high values of N , the island is already large enough
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Fig. 16. Nondispersive two-electron wave packet for N = 5
(a1–a3) and N = 15 (b1–b3), as well as the first excited
mode of the nondispersive wave packet for N = 15 (c1–c3), at
ω = 0.2N−3 and F = 0.005N−4. The Husimi density of the
Floquet states is plotted for the phases (a1–d1) ωt = 0, (a2–d2)
π/2, (a3–d3) π, and compared to the corresponding classical
Poincaré sections (d1–d3). With increasing N , the wave packet
is more and more localized on the center of the 1:1 resonance,
due to the decreasing relative size of 2π� (as compared to the
typical atomic scales, see Eqs. (3)) indicated by the dashed
rectangles in (a1) and (b1). At N = 15, the contour lines of
the Husimi density reproduce the structure of the island in the
classical Poincaré section rather well.

to trap an additional wave packet state, giving rise to a
first excited mode of the nondispersive wave packet (see
Figs. 16c1–16c3, and reference [10] for an analogous case
in driven hydrogen).

5.2 Lifetimes of the wave packet states

As already mentioned in the introduction, the time scale
over which the nondispersive wave packet follows the res-
onantly driven classical orbit without spreading is only
limited by the finite ionization rate of the correspond-
ing Floquet state. Since this ionization proceeds via a
classically forbidden tunneling process, the associated de-
cay rate is, as in driven hydrogen [6,8,10], very small.
For the wave packet state of the N = 8 series (ω =
0.2N−3 and F = 0.005N−4) for instance, we obtain
Γ/2 � 1.77 × 10−11 a.u., which corresponds to a lifetime
of τ � 1.8× 106 field cycles before the wave packet popu-
lation is appreciably redistributed over the ionization con-
tinuum.

In general, one expects the ionization rate of the wave
packets to decrease on average exponentially ∼ exp(−SN)
with N , where S is the semiclassical action across the tun-
neling barrier that confines the resonance island at N = 1.
In contrast to the unperturbed collinear configuration dis-
cussed in Section 4 (Fig. 11c), however, such an exponen-

Fig. 17. Ionization rates (HWHM) of the wave packet state
localized on the 1:1 resonance island, as a function of the in-
ner electron’s quantum number N (ω = 0.2N−3 and F =
0.005N−4), for different strengths Fst of the static field. Cir-
cles connected by thick solid lines: Fst = 0; squares connected
by thin solid lines: Fst = 0.001N−4; diamonds connected by
dotted lines: Fst = 0.002N−4. The strong fluctuations of the
rates are attributed to the coupling to Floquet states that are
associated with the chaotic domain of phase space.

tial decrease is not observed in our calculations. As we
see in Figure 17, the ionization rates exhibit, in the range
N = 5 . . . 15, strong, quasi-erratic fluctuations between
Γ/2 ∼ 10−12 a.u. and Γ/2 ∼ 10−8 a.u., corresponding to
lifetimes between 104 and 107 field cycles. No significant
tendency towards lower values for increasing N can be
unambiguously identified.

The observed fluctuations of Γ represent a clear sig-
nature of the mixed regular-chaotic structure of the clas-
sical phase space (see, e.g., Figs. 16d1–16d3). In contrast
to globally regular systems such as the unperturbed Zee
configuration (see Sect. 4.2), the coupling from the locally
bound domain to the ionization continuum is not given by
a single tunneling rate. Instead, it is mediated by a two-
step process which, besides tunneling through the barri-
ers of the regular island, involves also chaotic transport
through irregular phase space outside the island towards
the continuum. It is in fact this latter, chaotic component
of the coupling process that generates the fluctuations of
the decay rates, on top of their on average exponential
decrease with N . This chaos-assisted tunneling mecha-
nism, originally formulated for tunneling transitions be-
tween symmetric regular islands in bounded systems [58],
was indeed proven to govern the decay of nondispersive
wave packets in driven one-electron atoms [12], the lat-
ter exhibiting similar quasi-erratic deviations of Γ from a
purely exponential law (see also [59]).

In the Floquet spectrum, the chaos-induced modifi-
cation of the tunneling process can essentially be under-
stood via the influence of near-resonant chaotic states on
the ionization rate of the wave packet state. As we see
in Figures 12b–12d, the widths of the energetically low-
lying members of the N = 8 series generally increase with
increasing F . Local, pronounced enhancements of Γ , how-
ever, occur near avoided crossings (corresponding to mul-
tiphoton resonances) with higher-lying states of the same
series, which are associated with the chaotic phase space
domain (compare Figs. 12b–12d with Fig. 12a). Hence,
at a given scaled field amplitude, e.g. F = 0.005N−4,
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the decay rate of the wave packet state depends sensitively
on the effective interaction with nearby chaotic states in
the spectrum, the latter being essentially determined by
the energetic distance to those states, as well as by the
corresponding coupling matrix elements. Since these in-
gredients vary in a random-like way with the quantum
number N of the inner electron (at fixed F/N−4), the re-
sulting effect on the wave packet’s ionization rate may turn
completely different when changing N to N + 1 (compare
here Figs. 12a, 12b to Figs. 15a1, 15a2 and 15b1, 15b2),
and therefore cannot be predicted by simple semiclassical
considerations.

The average exponential decrease of the ionization
rate, on the other hand, should in principle be amenable
to semiclassical estimations, as it is essentially determined
by the height of the tunneling barrier that confines the
resonance island in phase space. Semiclassical approaches
to quantitatively evaluate the associated tunneling rates
for nonintegrable systems are presently under construc-
tion (see [60])6.

5.3 Influence of an additional, static electric field

Let us finally discuss to which extent the wave packet
dynamics of the collinear atom is modified by the applica-
tion of an additional, static electric field with a strength
of up to 20 percent of the driving field amplitude. As al-
ready pointed out in Section 2.3, such a static field is
required to stabilize the driving-induced nonlinear reso-
nances in the classical dynamics of the three-dimensional
atom. While the transverse dynamics of the driven con-
figuration is therefore substantially modified by the static
field, the structure of the collinear phase space remains
nearly unaffected. This is seen in Figures 18a1–18a3 which
show Poincaré sections of the collinear phase space at
ω = 0.2 and F = 0.005, for gradually increasing static
field components Fst = 0 . . . 0.002. Except for a slight re-
duction of their size, the two dominant regular islands are
not significantly affected by the static perturbation.

Accordingly, we find that the phase space projec-
tions of the Floquet states localized on these islands re-
main essentially unmodified, too, in presence of the static
field. This is illustrated in Figures 18b1–18b3 which show
the resulting Husimi density of the nondispersive wave
packet state of the N = 8 series at ω = 0.2N−3 and
F = 0.005N−4. However, while no visible change oc-
curs in the phase space localization properties, the ion-
ization rate is significantly affected by the static field: it
increases from Γ/2 � 1.77 × 10−11 a.u. at Fst = 0, to
Γ/2 � 3.05×10−9 a.u. at Fst = 0.002N−4, corresponding

6 Also note, that the critical field amplitude needed to induce
an appreciable increase of the decay rates beyond their mini-
mum value at small field amplitudes coincides remarkably well
for N = 8, 9, 10, as equally observable in Figures 12 and 15.
This is a signature of the transition from globally regular to
dominantly chaotic dynamics in the classical phase space, and
highlights the relevance of the classical scaling laws (3), also
for the quantum mechanical ionization process.

Fig. 18. (a1–a3) Poincaré section of the classical dynamics
at ω = 0.2 and F = 0.005, with a static field Fst = 0 (a1),
0.001 (a2), 0.002 (a3). (b1–b3) Husimi density of the wave
packet state localized on the 1:1 resonance island for N = 8,
at ω = 0.2N−3 and F = 0.005N−4, calculated in presence of
a static field Fst = 0 (b1), 0.001N−4 (b2), 0.002N−4 (b3) (at
driving phase ωt = 0). The phase space projection of the wave
packet remains almost invariant when increasing the static field
from Fst = 0 to 0.002N−4, in agreement with the observation
that also the classical 1:1 resonance island is largely unaffected
by the additional perturbation.

to a decrease of the wave packet’s lifetime from 1.8×106 to
1.0× 104 field cycles. Since the static field notably affects
the asymptotic part of the effective potential experienced
by the outer electron (see Fig. 3), and thereby modifies
the transport towards the continuum, such an enhance-
ment of Γ with Fst is not unexpected. However, Figure 17
shows that the ionization rates do not always increase with
increasing Fst. Instead, a rather erratic dependence of Γ
on Fst and N is encountered, what calls for a more quan-
titative (and possibly statistical) analysis of the problem.

6 Conclusion

Our present study provides abundant evidence for the
stabilizing effect of classical nonlinear resonances on pe-
riodically driven quantum systems, in the presence of
strong electron-electron interactions. We have seen that
such nonlinear resonances, which actually reflect a phase
locking phenomenon [16] between the unperturbed quan-
tum dynamics and the driving field, allow to launch non-
dispersive two-electron wave packets along the highly cor-
related frozen planet orbit of collinear helium, with tiny,
tunneling induced leakage towards the atomic continuum.
As already observed in simpler one electron systems un-
der external driving, these wave packets can be identified
by the characteristic parameter dependence of their en-
ergies and decay rates, with strong signatures of chaos
assisted ionization. Our 1D quantum calculations corrob-
orate an intimate quantum-classical correspondence, al-
ready at rather weak excitations (N ≥ 5) of the inner
electron, even in the presence of a static electric field
component added to the periodic drive (which confines
the real 3D dynamics to the vicinity of the field polariza-
tion axis, in classical 3D calculations). This strongly sug-
gests that nondispersive two-electron wave packets exist
also in driven 3D helium (for which, so far, only classical
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simulations are feasible), and that similar stabilization
phenomena are possible also in other, high dimensional
atomic or molecular systems under external forcing. How-
ever, our comparison of the life times of 1D and 3D
collinear frozen planet states in the absence of any external
perturbation also suggest that the life times of nondisper-
sive wave packets dramatically depend on the accessible
phase space dimensions, as a direct consequence of the
interelectronic repulsion – absent in single electron Ryd-
berg dynamics. It remains to be seen whether opening one
single transverse degree of freedom – by extending config-
uration space from the z-axis to the plane, in a 2D model
(now within reach for most advanced supercomputing fa-
cilities) – suffices to restablish the order of magnitude of
the (field free) 3D decay rates, and whether the confine-
ment by the static field has a systematic effect on the rates
in 2D or 3D (with or without an external drive).
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et al., J. Electron. Spectrosc. Relat. Phenom. 101–103, 27
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